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For centuries, scientists have attempted to identify and document analytical laws that underlie
physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems.

Mathematical symmetries and invariants
underlie nearly all physical laws in na-
ture (1), suggesting that the search for

many natural laws is inseparably a search for con-
served quantities and invariant equations (2, 3).
Automated techniques for generating, collecting,
and storing data from scientific measurements
have become increasingly precise and powerful,
but automated processes for distilling this data into
knowledge in the form of analytical natural laws
have not kept pace. Thus, there is a pressing prac-
tical need (4, 5) for improved forms of scientific
data mining (6, 7).

The most prohibitive obstacle to overcome in
order to search for conservation laws computa-
tionally is finding meaningful and nontrivial
invariants. There exist an infinite number of
identities that are numerically invariant but have

no connection to the natural physics or dynamics
of the system. We introduce a principle for iden-
tifying only the useful analytical relations that are
related to the system dynamics. We then dem-
onstrate how a search algorithm based on this
principle identifies meaningful analytical links
in data captured from various physical systems
(Fig. 1).

Our goal is to find natural relations where
they exist, with minimal restrictions on their
analytical form (i.e., free-form). Many methods
exist for modeling scientific data: Some use
fixed-form parametric models derived from ex-
pert knowledge, and others use numerical models
(such as neural networks) aimed at prediction.
Still others have explored restricted model spaces
using greedy monomial search (8, 9). Alterna-
tively, we seek the principal unconstrained
analytical expression that explains symbolically
precise conserved relations, thus helping distill
data into scientific knowledge.

Symbolic regression (10) is an established
method based on evolutionary computation (11)
for searching the space of mathematical expres-
sions while minimizing various error metrics [see

section S4 in the supporting online material
(SOM)]. Unlike traditional linear and nonlinear
regression methods that fit parameters to an
equation of a given form, symbolic regression
searches both the parameters and the form of
equations simultaneously (see SOM section S6).
Initial expressions are formed by randomly com-
bining mathematical building blocks such as
algebraic operators {+, –, ÷, ×}, analytical
functions (for example, sine and cosine), con-
stants, and state variables. New equations are
formed by recombining previous equations and
probabilistically varying their subexpressions.
The algorithm retains equations that model the
experimental data better than others and aban-
dons unpromising solutions. After equations reach
a desired level of accuracy, the algorithm termi-
nates, returning a set of equations that are most
likely to correspond to the intrinsic mechanisms
underlying the observed system.

Although symbolic regression is typically
used to find explicit (12–14) and differential
equations (15), this method cannot readily find
conservation laws or invariant equations. Rather
than trying to model a specific signal, we are
trying to detect any underlying physical law that
the system obeys, which may or may not be
constant (e.g., a Lagrangian).

A particular challenge is requiring the law to
be a function of the system’s state while avoiding
trivial or meaningless relations. For any system
over the state space x, there are infinitely many
trivial equations over x that satisfy a conserved
quantity, such as sin2(x1) + cos2(x1) or x1 + 4.56 –
x2x1/x2. Additionally, there are infinitely many
arbitrarily close trivial conservations, such as
4.56 + 1/(100 + x1

2). To distinguish good con-
servation law candidates from poor ones, we
need a more robust principle than simply invar-
iance alone.

The identification of nontrivial relations is a
major challenge, even for human scientists: Many
published invariant quantities have turned out to
be coincidental (16). The mere appearance of a
conserved value is insufficient for a conservation
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Fig. 1. Mining physical systems. We captured the angles and angular velocities
of a chaotic double-pendulum (A) over time using motion tracking (B), then we
automatically searched for equations that describe a single natural law relating

these variables. Without any prior knowledge about physics or geometry, the
algorithm found the conservation law (C), which turns out to be the double
pendulum’s Hamiltonian. Actual pendulum, data, and results are shown.
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law. The key insight into identifying nontrivial
conservation laws computationally is that the
candidate equations should predict connections
between dynamics of subcomponents of the sys-
tem. More precisely, the conservation equation
should be able to predict connections among de-
rivatives of groups of variables over time, rela-
tions that we can also readily calculate from new
experimental data.

One instance of such a metric is the partial
derivatives between pairs of variables (see SOM
section S1). For example, in a two-dimensional
system we could measure variables x(t) and y(t)
over time. The system’s partial derivatives esti-
mated from time-series data would then be x′/y′ ≈
∆x/∆y and y′/x′ ≈ ∆y/∆x (where x′ and y′ represent
the time derivatives of x and y). Similarly, given a
candidate conservation law equation f (x,y), we
can derive the same values through differentia-
tion: (df /dy)/(df /dx) ≈ dx/dy and (df /dx)/(df /dy) ≈
dy/dx. We can now compare ∆x/∆y values from
the experimental data with dx/dy values from a
candidate conservation expression f (x,y) to mea-
sure how well it predicts intrinsic relations in the
system. In higher-dimensional systems, multiple
variable pairings and higher-order derivatives
yield a plethora of criteria to use. See SOM
sections S2 and S3 for generalization to higher-
dimensional systems. Using the partial-derivative
pairs, we define a new type of search criteria for
measuring how well a candidate analytical ex-
pression represents a nontrivial invariance over
the experimental data.

An important consequence of the partial-
derivative–pair measure is that it can also identify
relations that represent other nontrivial identities
of the system beyond invariants and conservation
laws. For example, if the system is confined to a
manifold, the manifold equation can also derive
accurate partial-derivative pairs. Similarly, the
partial-derivative pair can identify equations such
as Lagrangian equations, the energy equivalent to
the equation of motion in classical mechanics,
which summarize the systems dynamics but are
not invariant.

One can control, to an extent, the type of law
that the system might find by choosing what
variables to provide to the algorithm. For
example, if we only provide position coor-
dinates, the algorithm is forced to converge on
a manifold equation of the system’s state space.
If we provide velocities, the algorithm is biased
to find energy laws. If we additionally supply
accelerations, the algorithm is biased to find force
identities and equations of motion. However,
given these or other types of variables, other or
previously unknown analytical laws may exist.

We used an algorithm (Fig. 2) to search for
analytical laws in data captured from several
synthetic and physical systems using various
sets of system variables. We present results for
a number of physical experimental systems (see
SOM section S7 for a study of synthetic systems,
geometric symmetries, and manifolds). A video
is available online (see SOM section S14).

We collected data from standard experimental
systems typically used in undergraduate physics
education: an air-track oscillator and a double
pendulum (Fig. 3). We used motion-tracking
software to record the devices’ positions over
time. We then numerically calculated velocities
and accelerations (see SOM section S11). All
data sets are available in SOM section S15.

Without any additional information, system
models, or theoretical knowledge, the search with
the partial-derivative–pairs criterion produced
several analytical law expressions directly from
these data. For each system, the algorithm outputs
a short list of ~10 equations that have maximal
accuracy found for different sizes (complexities)

of equations (see SOM section S8). We then
inspect this list manually to select the final equa-
tion. Often the list consists of varying approx-
imations or elaborations on a particular law
equation, but it can contain qualitatively different
equations, as discussed below.

We experimented on two configurations of the
air track: (i) two-spring single-mass and (ii) three-
spring double-mass. Similarly, we collected time-
series data from a pendulum and a double
pendulum (Fig. 3) with the use ofmotion-tracking
(SOM section S12).

The single-car air track is a harmonic os-
cillator with slight damping from the air and its
two springs. With only minimal noise and damp-

Fig. 2. Computational approach for detecting conservation laws from experimentally collected data. (A)
First, calculate partial derivatives between variables from the data, then search for equations that may
describe a physical invariance. To measure how well an equation describes an invariance, derive the same
partial derivatives symbolically to compare with the data. (B) The representation of a symbolic equation in
computer memory is a list of successive mathematical operations (see SOM section S6). (C) This list
representation corresponds to a graph, where nodes represent mathematical building blocks and leaves
represent parameters and system variables. Both (B) and (C) correspond to the same equation. The
algorithm varies these structures to search the space of equations.

3 APRIL 2009 VOL 324 SCIENCE www.sciencemag.org82

REPORTS

  

http://www.sciencemag.org


ing, it was the simplest physical system that we
examined. The double-mass air track consisted of
two coupled harmonic oscillators of different
masses. There was considerable noise in this data
set as a result of compression of the middle
spring. The pendulum is a nonlinear oscillator
that is masked by small-angle approximations.
The double pendulum is a coupled nonlinear
oscillator system that exhibits rich dynamics (17)
and chaos at certain energies (18), making it
challenging tomodel (19, 20). Additionally, there
is higher measurement noise and dampening
errors due to higher velocities.

Given position and velocity data over time,
the algorithm converged on the energy laws of
each system (Hamiltonian and Lagrangian equa-
tions). Given acceleration data also, it produced
the differential equation of motion corresponding
to Newton’s second law for the harmonic oscil-
lator and pendulum systems. Given only position

data for the pendulum, the algorithm converged
on the equation of a circle, indicating that the
pendulum is confined to a circle. The algorithm
also produced several inexact expressions
through small-angle approximations—for exam-
ple, using x in place of sin(x) and 1 – x2 in place
of cos(x) in the pendulum and double-pendulum
systems.

An interesting approximate law for the double
pendulum that emerged was conservation of an-
gular momentum. Given only data measured
while the pendulumwas chaotic (at high energy),
the algorithm fixated on this law. The conserva-
tion of momentum equation is simpler than other
valid laws and is approximately correct for high
velocities where gravity is negligible, as with the
high-energy chaotic data set.

Similarly, given only data from low-velocity
in-phase oscillations, the algorithm fixated on
small-angle approximations and uncoupled en-

ergy terms. By combining the chaotic data with
low-velocity in-phase oscillation data, the algo-
rithm converged onto the precise energy laws
after several hours of computation.

In the absence of appropriate building blocks,
the algorithm developed approximations. For ex-
ample, eliminating the sine and cosine operations
from the set of equation building blocks caused
the pendulum invariant to be expressed as w2 +
k1q

2 – k2q
4 (where q is the pendulum’s angle,w is

the angular velocity, and k1 and k2 are constants),
thereby exploiting the 4th-order Taylor series ex-
pansion of the cosine function. Eliminating cosine
but not sine drove the algorithm to converge on
the equality cos(q) = sin(q + p/2) or more com-
plex equivalences (see SOM section S13).

Useful scientific theory is both predictive and
parsimonious. Similarly, some equations may be
more accurate but overfit the data, whereas others
may be more parsimonious but oversimplify

Fig. 3. Summary of laws inferred from experimental data collected from
physical systems. Depending on the types of variables provided to the
algorithm, it detects different types of laws. Given solely position information,

the algorithm detects positionmanifolds; given velocities, the algorithm detects
energy laws; given accelerations, it detects equations of motion and sum of
forces laws (q, angle; w, angular velocity; a, angular acceleration).
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(21, 22); the right balance is difficult to specify
in advance. Instead of producing a single result,
the algorithm produces a small set of final can-
didate analytical expressions on the accuracy-
parsimony Pareto front (see SOM section S8),
which represents the optimal solutions as they
vary over equation complexity and the maximum
predictive ability. Parsimony is measured as the
inverse of the number of terms in the expression,
whereas the predictive accuracy is measured as
error on withheld experimental data used only for
validation.

The Pareto front for the double pendulum
(Fig. 4A) reveals a few particularly simple
equations that predict the partial-derivative pairs
accurately. Predictive accuracy was measured by
cross-validation with the partial-derivative–pairs
criterion (see SOM section S2). The Pareto front
tends to contain a cliff where predictive ability
jumps rapidly at some minimum complexity.
Predictive ability then improves only marginally
with more complex equations (Fig. 4A). The
conservation of angular momentum equation lies
on the Pareto front, though it is inexact. The
double pendulum’s Hamiltonian lies at the point
representing the simplest equation with the larg-
est increase in predictive ability. In all of our
experiments, the solution at this point has been an
exact theoretical law (see SOM section S7 for
additional systems).

In the worst case, the time to converge on the
law equations depends exponentially on the
complexity of the law expression itself and
roughly quadratically on the system dimension-
ality (the number of variable pairings) (Fig. 4B).
The algorithm’s search is readily parallelizable,
as many candidate functions need to be evaluated
simultaneously. In a 32-core implementation, the
time required ranged from a few minutes for the
harmonic oscillator to 30 hours for the double
pendulum. The impact of noise also couples with

these factors (see SOM section S9). For compar-
ison, the simulated double-mass air-track and
simulated double-pendulum data sets (where
measurements are noiseless) took ~1/10th of the
computational effort to analyze. A summary of
performance versus noise level is provided in
SOM section S9.

Though the algorithm can present equations
corresponding to physical laws in their mathe-
matical form, we are still faced with the challenge
of justifying and giving words to their meaning.
One difficulty is that we cannot know with cer-
tainty the units of bulk constants in the law ex-
pressions (for example, combinations of masses,
lengths, etc. embodied in the system). Second,
the equation may model something that is in-
herently difficult to observe directly, such as total
energy. Requiring equations to maintain consist-
ent physical units still leaves room for ambiguity.

A more systematic approach to parsing the
coefficients is to analyze multiple data sets from
the same systems, albeit with different config-
urations and parameters. To demonstrate this
approach, we used several virtual double pendula
with randomly chosen masses and lengths to
generate several synthetic data sets. We fit the
free coefficients of the automatically discovered
model to each data set and then invoked the
equation search algorithm again to seek a relation
between the coefficients and parameter sets.
After arbitrarily defining k1 = 1, the algorithm
identified that k2 = m2L2

2/(m1L1
2 + m2L1

2), k3 =
2m2L2/(m1L1 + m2L1), k3 = 19.6/L1, and k4 =
19.6m2L2/(m2L1

2 + m1L1
2), where 19.6 is the

only absolute constant (over all parameter
variations) whose units are necessarily meters
per square seconds (see SOM section S5). In the
above expressions, m is mass and L is length. A
similar approach can be used to identify coef-
ficients that vary slowly over time (for example,
because of damping, creeping, or ecological drift).

Computational systems such as this could
play a role in modeling high-dimensional and
complex phenomena (23, 24) that currently stress
the reach of expert-driven research. A key chal-
lenge is scaling to higher complexity. To accom-
plish this, scientists leverage knowledge from
simpler systems to explain more complex sys-
tems. Can an algorithm do this as well?

One method to use prior knowledge is seed-
ing the equation search by initializing the
algorithm’s initial set of candidate expressions
with terms from equations from simpler systems.
For example, the single-pendulum and the double-
harmonic oscillator equations provide clues to the
laws governing the more complex double pendu-
lum. We shuffled terms of the simpler systems
(for example, exchanging velocity symbols with
double-pendulum velocity variables) and ran-
domized parameters to generate many inexact
initial expressions. This seeding approach does
not constrain the equation search, but it biases the
search to reuse terms from previous laws.

Bootstrapping the double-pendulum search in
this fashion reduced the search time by nearly an
order of magnitude, from 30 to 40 hours of com-
putation to 7 to 8 hours (Fig. 4B). On the basis of
this result, we conjecture that bootstrapping may
be critical for detecting laws in higher-order
systems that are veiled in complexity.

A statistical analysis of the subexpression
frequency and complexity across populations of
various physical systems revealed that the terms
that are both frequently used and complex tend to
be more physically meaningful, such as trigono-
metric terms representing potential energies,
squared velocities representing kinetic energies,
or linear force combinations (see SOM section
S10). These terms may make up an “emergent
alphabet” for describing a range of systems,
which could accelerate their modeling and sim-
plify their conceptual understanding.

Fig. 4. Parsimony versus accuracy and computation time. (A) Pareto front
(solid black curve) for physical laws of the double pendulum and the
frequency of sampling during the law equation search (grayscale). The
equation at the cliff corresponds to the exact energy conservation law of
the double pendulum (highlighted in the figure). A second momentum
conservation law that we encountered is also highlighted. (B) Computation

time required to detect different physical laws for several systems. The
computation time increases with the dimensionality, law equation complexity,
and noise. A notable exception is the bootstrapped double pendulum, where
reuse of terms from simpler systems helped reduce computational cost by
almost an order of magnitude, suggesting a mechanism for scaling higher
complexities.
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We have demonstrated the discovery of
physical laws, from scratch, directly from ex-
perimentally captured data with the use of a
computational search. We used the presented
approach to detect nonlinear energy conservation
laws, Newtonian force laws, geometric invari-
ants, and system manifolds in various synthetic
and physically implemented systems without
prior knowledge about physics, kinematics, or
geometry. The concise analytical expressions that
we found are amenable to human interpretation
and help to reveal the physics underlying the
observed phenomenon. Many applications exist
for this approach, in fields ranging from systems
biology to cosmology, where theoretical gaps
exist despite abundance in data.

Might this process diminish the role of future
scientists? Quite the contrary: Scientists may use
processes such as this to help focus on interesting
phenomena more rapidly and to interpret their
meaning.
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The Automation of Science
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The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

Computers are playing an ever-greater role
in the scientific process (1). Their use to
control the execution of experiments con-

tributes to a vast expansion in the production of
scientific data (2). This growth in scientific data,
in turn, requires the increased use of computers
for analysis and modeling. The use of computers
is also changing the way that science is described
and reported. Scientific knowledge is best ex-
pressed in formal logical languages (3). Only
formal languages provide sufficient semantic
clarity to ensure reproducibility and the free
exchange of scientific knowledge. Despite the

advantages of logic, most scientific knowledge is
expressed only in natural languages. This is now
changing through developments such as the
Semantic Web (4) and ontologies (5).

A natural extension of the trend to ever-greater
computer involvement in science is the concept of
a robot scientist (6). This is a physically imple-
mented laboratory automation system that exploits
techniques from the field of artificial intelligence
(7–9) to execute cycles of scientific experimenta-
tion. A robot scientist automatically originates
hypotheses to explain observations, devises exper-
iments to test these hypotheses, physically runs the
experiments by using laboratory robotics, inter-
prets the results, and then repeats the cycle.

High-throughput laboratory automation is trans-
forming biology and revealing vast amounts of
new scientific knowledge (10). Nevertheless, ex-
isting high-throughput methods are currently in-
adequate for areas such as systems biology. This
is because, even though very large numbers of

experiments can be executed, each individual ex-
periment cannot be designed to test a hypothesis
about amodel. Robot scientists have the potential
to overcome this fundamental limitation.

The complexity of biological systems neces-
sitates the recording of experimental metadata in
as much detail as possible. Acquiring these meta-
data has often proved problematic. With robot
scientists, comprehensive metadata are produced
as a natural by-product of the way they work.
Because the experiments are conceived and ex-
ecuted automatically by computer, it is possible
to completely capture and digitally curate all as-
pects of the scientific process (11, 12).

To demonstrate that the robot scientist meth-
odology can be both automated and be made
effective enough to contribute to scientific knowl-
edge, we have developed Robot Scientist “Adam”
(13) (Fig. 1). Adam’s hardware is fully automated
such that it only requires a technician to period-
ically add laboratory consumables and to remove
waste. It is designed to automate the high-
throughput execution of individually designed
microbial batch growth experiments in micro-
titer plates (14). Adam measures growth curves
(phenotypes) of selected microbial strains (geno-
types) growing in defined media (environments).
Growth of cell cultures can be easily measured in
high-throughput, and growth curves are sensitive
to changes in genotype and environment.

We applied Adam to the identification of
genes encoding orphan enzymes in Saccharomy-
ces cerevisiae: enzymes catalyzing biochemical
reactions thought to occur in yeast, but for which
the encoding gene(s) are not known (15). To set
up Adam for this application required (i) a
comprehensive logical model encoding knowl-
edge of S. cerevisiae metabolism [~1200 open
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